Reduction of Magnetic Field Inhomogeneity Artifacts in Echo Planar Imaging with SENSE and GESEPI at High Field

Qing X. Yang,1* Jianli Wang,1 Michael B. Smith,1,2 Mark Meadowcroft,1 Xiaoyu Sun,1 Paul J. Eslinger,3 and Xavier Golay4,5

Geometric distortion, signal-loss, and image-blurring artifacts in echo planar imaging (EPI) are caused by frequency shifts and T_2^* relaxation distortion of the MR signal along the k-space trajectory due to magnetic field inhomogeneities. The EPI geometric-distortion artifact associated with frequency shift can be reduced with parallel imaging techniques such as SENSE, while the signal-loss and blurring artifacts remain. The gradient-echo slice excitation profile imaging (GESEPI) method has been shown to be successful in restoring tissue T_2^* relaxation characteristics and is therefore effective in reducing signal-loss and image-blurring artifacts at a cost of increased acquisition time. The SENSE and GESEPI methods are complementary in artifact reduction. Combining these two techniques produces a method capable of reducing all three types of EPI artifacts while maintaining rapid acquisition time. Magn Reson Med 52:1418–1423, 2004. © 2004 Wiley-Liss, Inc.

Key words: fast imaging; image artifacts reduction; T_2^* contrast; EPI; high field MRI

Challenges to performing rapid echo planar imaging (EPI) at high field are increased considerably by amplified magnetic field inhomogeneity artifacts (1,2). Echo planar images are typically acquired with a long acquisition trajectory during which the MR signal is modulated by T_2^* relaxation. This makes EPI inherently vulnerable to magnetic field inhomogeneity, which is most noticeable in images of the inferior and frontal brain areas. Given the important role of EPI in dynamic imaging, significant efforts have been made in developing techniques to reduce or eliminate these artifacts (3–31).

The magnetic field inhomogeneity artifacts include signal loss, image blurring, and geometric distortion. Among these artifacts, image blurring and signal loss are caused by distortion of T_2^* relaxation predominantly due to the through-plane local gradient, while geometric distortion is caused by a frequency shift of the MR signal due to the in-plane local gradient. Since the gradient-echo slice excitation profile imaging (GESEPI) method has been shown to be capable of removing distortions in T_2^* relaxation characteristics caused by the through-plane local gradient at high field strengths (13,31), it can be highly effective in correcting EPI signal-loss and image-blurring artifacts. While GESEPI provides excellent reduction of these two kinds of artifacts, its utility for rapid EPI is limited by increased image acquisition time. This limitation can be overcome with SENSE encoding, which reduces k-space sampling time (32). In addition, the geometric distortion artifact associated with the in-plane local gradient is significantly mitigated with SENSE as a result of reduced data acquisition time (33–35). The signal-loss and image-blurring artifacts associated with the through-plane local gradient, however, still remain in SENSE EPI. Thus, incorporation of SENSE with GESEPI will provide a more effective method for correcting all three types of artifacts while reducing image acquisition time. In this paper, a SENSE-GESEPI approach is introduced for acquiring artifact-free, heavily T_2^*-weighted echo planar images of the brain at a field strength of 3.0 T. A theoretical analysis of artifact reduction with GESEPI and SENSE in EPI acquisition is provided. To validate the theoretical analysis, experimental results of artifact reductions with SENSE, GESEPI, and SENSE-GESEPI in EPI are systematically evaluated with phantom and in vivo human studies.

THEORY

The effects of local magnetic field gradients on EPI can be decomposed into through-plane and in-plane components and treated separately. The through-plane local gradient plays a dominant role in distortion of tissue-specific T_2^* relaxation characteristics (3,6,9,31). Assuming that magnetic field inhomogeneity in the slice-selection direction, z, can be approximated with a linear local gradient, G_z, voxel signal intensity during a two-dimensional (2D) EPI acquisition can be described as

$$S = M_0 \exp(-t/T_2^*) \text{sinc}[\gamma G_z z_0 t/2],$$ \[1\]

where γ is the gyromagnetic ratio, M_0 is the magnetization density, and z_0 is the excited slab thickness (13). In the above expression, an ideal excitation profile is assumed. The T_2^* decay during data acquisition time, t, is distorted by G_z with a sinc-function modulation. Distortion of T_2^* relaxation characteristics results in a strong attenuating
modulation of the MR signal along EPI k-space trajectory, causing signal-loss and image-blurring artifacts.

As shown in the timing diagram in Fig. 1, to remove the local gradient modulation on voxel signal, the GESEPI technique acquires multiple (N) images with an incremental compensation gradient, G_c, in the slice-selection direction (13). In this case, signal intensity of a voxel in the excited slab is expressed in k-space as

$$S = M_0 \exp\left(-\frac{t}{T_2^*}\right) \text{sinc}\left[\pi(k - k_i(t))z_0\right],$$

where $k_i = \gamma G_c t/2\pi$, $k_i = \gamma G_i t/2\pi$, and τ represents the duration of G_c. Applying Fourier transform to Eq. [2] with respect to k_c yields a set of images of N subslices with intensity, I, given by

$$I = M_0 \exp\left(-\frac{t}{T_2^*}\right) \exp\left[\gamma G_i z_0 t\right] \text{rect}(N),$$

where rect is a rectangular function representing the pixel intensity profile of the excited slab. The sinc-function modulation on T_2^* relaxation in Eq. [1] is replaced with a phase modulation that does not affect the magnitude image. By removal of the sinc-function modulation due to G_i during EPI acquisition, GESEPI recovers signal loss and reduces image blurring.

Since G_c is, effectively, also a phase-encoding gradient in the slice direction, the GESEPI technique can be regarded as an oversampled three-dimensional (3D) acquisition of the excited slab consisting of N subslices. The images of the subslices in the oversampled region are discarded, because they are outside the excited slab with no appreciable signal intensity. Subsequently, the remaining magnitude images of adjacent subslices are added in groups to yield a set of final images with the desired slice thickness.

The frequency shift of the MR signal by in-plane local gradient, on the other hand, results in pixel shift and distortion in EPI. These artifacts are more prominent in the phase-encoding direction, because the encoding gradient and effective spectral bandwidth in this direction are relatively small and, thus, more susceptible to local field gradients and resultant frequency-shift perturbations. One solution to alleviate in-plane local gradient artifacts is to increase phase-encoding gradient strength and decrease image acquisition time. This solution is the natural consequence of SENSE acquisition, in which case the phase-encoding gradient is increased by SENSE reduction factor, r, while acquisition time is reduced by the same factor. Thus, those artifacts caused by the in-plane local gradient are significantly reduced with SENSE. Taken together, GESEPI and SENSE are complementary methods, allowing for reduction of EPI artifacts due to both in- and through-plane gradients.

METHODS

To experimentally demonstrate the theoretical analysis of voxel signal intensity behavior along k-space trajectory and deblurring effect of the GESEPI method for EPI, a study using a quasi-point source phantom, shown in Fig. 2, was first carried out. This phantom consisted of two 5-mm-diameter tubes filled with gelatin, with a 1.8-mm distance between the tubes. The tubes were aligned with the B_0 field, serving as quasi-point sources for axial images. This phantom is simply termed “point source” hereafter for brevity. Standard gradient-echo (GE) and GESEPI echo planar images were acquired on a MedSpec S300 whole-body imager (Bruker Biospin Corp., Ettlingen, Germany) from two axial slices: Slice I was located 37 mm from the gelatin–air interface where local gradients were

![Fig. 2. Experimental setup for the point source phantom study.](image-url)
RESULTS

To demonstrate blurring artifact reduction by the GESEPI method, Fig. 3 shows a comparison of echo planar images acquired with and without application of the GESEPI technique from two separate slices of the point source phantom. The three images in Fig. 3a were obtained without a phase-encoding gradient in the left–right direction. These images are projection images from the point-source phantom. The plot in Fig. 3b under each image represents the signal intensity profile from the same horizontal line passing through one of the point sources in the image. Since no phase-encoding gradient was applied, the image intensity distributions along this direction were determined by T_2^* relaxation characteristics only. Therefore, each plot represents a profile of the point spread function (PSF) along the horizontal direction using the corresponding acquisition method. The echo planar image signal intensity profile in the homogeneous region of Slice I yields a sharp peak as expected, rendering a well-defined PSF. Assuming the plot is a single Lorentzian, the linewidth (FWHM) is 0.71 pixel wide. In the inhomogeneous region near the gelatin–air interface in Slice II, however, the signal intensity spreads out into the entire FOV in the horizontal direction, representing a broad PSF. The corresponding linewidth is 3.5 pixels wide. The image resolution under such a condition is significantly compromised. The PSF profile in the same slice of the GESEPI echo planar image is significantly improved as its linewidth is reduced to 1.2 pixels. Figure 3c shows the actual EPI and GESEPI-EPI images of the point-source phantom of corresponding slices. The blurring artifact due to the local field gradient and its reduction with GESEPI can be seen clearly in the corresponding images.

Figure 4 shows four sets of echo planar axial images of the same volume from the susceptibility phantom with the first slice (left-most column) cutting through the edge of the air sphere in the phantom. The images in the first row were acquired using the GE method without SENSE ($r = 1$), and the remaining rows were obtained with SENSE ($r = 3$) using GE, GESEPI, and SE methods, respectively, as indicated on the left side of each row. The diminishing dark region found in the image center of the first row as the slices move away from the air sphere is a typical signal-loss artifact in GE echo planar images produced by the local field gradient. Comparing these images with corresponding images acquired with SENSE in the second row, the signal-loss artifact remains but with a different appearance as the SENSE factor increases to 3. The artifact in the images in the third row taken with the SENSE-GESEPI method is significantly reduced, yielding similar image intensity distributions to that with the SE method in the bottom row.
Figure 5 shows two sets of axial human brain GE echo planar images acquired without SENSE and with SENSE ($r = 3$). To assess the geometric distortion artifact, identical ellipses were drawn around the contour of the brain in images acquired from a specific brain slice with and without SENSE. The image of this slice without SENSE exhibits a typical EPI geometrical-distortion artifact, characterized by the anterior brain area being stretched outside the ellipse, due to the local field gradient around the frontal sinus. As previously demonstrated (33–35), this artifact was significantly reduced with the SENSE method. Similar to the susceptibility phantom results in Fig. 4, the signal-loss artifacts as indicated by arrows remain pronounced in the images with SENSE with altered appearance. Thus, while the SENSE technique is effective in reducing geometric distortion due to the in-plane local gradient, it is ineffective in reducing signal-loss artifact due to the through-plane local gradient.

Figure 6 shows three sets of echo planar images from a human brain acquired using GE, GESEPI, and SE methods with SENSE ($r = 3$). As indicated by the arrows, severe signal-loss artifacts in the inferior–frontal and temporal brain regions can be seen in all slices acquired with the GE method. Thus, the signal-loss artifact remains a serious problem for T_2^* brain imaging with SENSE at 3.0 T. As seen in Fig. 6b, complimentary to the SENSE method, the GESEPI technique significantly reduces the signal-loss artifact. The effectiveness of signal-loss artifact reduction can be seen when comparing these with corresponding SE images. Incorporation of GESEPI with SENSE allows for effective reduction of all three types of artifacts in EPI.

DISCUSSION

Signal-loss and image-blurring artifacts occur concomitantly in T_2^*-weighted echo planar images because both artifacts are caused by T_2^* relaxation distortion due to the through-plane local field gradient. It is important to recognize, however, that a method to remove the signal-loss artifact does not necessarily remove the image-blurring artifact in EPI. For example, methods of adding multiple magnitude images acquired with different strengths of the slice-refocusing gradient result in a stronger image-blurring artifact. This is because the refocusing gradient utilized in these techniques only compensates the MR signal phase dispersion occurring at the center of k-space while modulation by the distorted T_2^* remains along the rest of EPI k-space trajectory. The composite image obtained by adding magnitude images acquired with different refocusing gradients would evidently inherit the blurring artifacts of all its component images. As shown theoretically and demonstrated experimentally with the phantoms, the GESEPI technique is capable of correcting both artifacts. In addition, signal-noise-ratio (SNR) is reduced in the composite images obtained by summing magnitude images acquired with different refocusing gradients.

Figure 5. GE echo planar images acquired from the same human brain volume without SENSE (a) and with SENSE ($r = 3$) (b). To facilitate visual assessment of geometrical distortions in the images, identical ellipses were superimposed on the bottom right images. The arrows indicate the typical signal-loss artifact in the inferior–frontal and temporal brain regions.
for this is that image pixel intensities acquired with different refocusing gradients are maximum only when \(k_c / H_1 \) such that these images contain only different parts of the object in the same slice according to the strength of the local field gradient (3,10). Summing these magnitude images results in no signal-averaging enhancement but adds noise to the signal. As shown in Eq. [2], the GESEPI technique removes sinc-function modulation by the local field gradient on the \(k \)-space signal. Subsequently, the signals acquired with multiple \(G_c \) steps are properly integrated with a Fourier transform. The SNR of a given slice is maintained.

The phantom and human brain data presented demonstrate that the SENSE and GESEPI methods are complementary and mutually facilitating in artifact reduction. Combining these two techniques allows for effective correction of all three kinds of artifacts in echo planar images. As discussed in theory, the artifacts in EPI caused by static field inhomogeneity can be classified into two categories and addressed using different approaches. While signal-loss and image-blurring artifacts caused by the through-plane local gradient can be effectively reduced with the GESEPI method, the geometric-distortion artifact caused by the in-plane local gradient remains uncorrected. Conversely, the SENSE method is effective in reducing the geometric distortion but ineffective in correcting the signal-loss and image-blurring artifacts. When combined with the SENSE encoding technique, the GESEPI method is more effective in reducing signal-loss and image-blurring artifacts because of the reduction of readout time. In addition, the limitation of increased image acquisition time for GESEPI is addressed efficiently with SENSE, allowing acquisition of artifact-corrected images of the brain in under 3 sec. Therefore, SENSE-GESEPI is a method of choice for high field \(T_2^* \) EPI applications.

In the GESEPI method, TR and flip angle are reduced in order to maintain image acquisition speed for dynamic applications. This would lead to SNR reduction. However, the SNR reduction due to shortened TR and the use of smaller flip angle is offset by a multiple-fold increase in slab thickness. Our experimental results from both phantom and in vivo studies indicate that the SNR of GESEPI is comparable to standard echo planar images of the same slice thickness. Our results are consistent with the theoretical analysis on SNR comparison between 2D and 3D imaging methods involving steady-state data acquisition (15). In practice, optimal imaging parameters such as TR, \(N \), and slab thickness for SENSE-GESEPI should be determined by the tradeoffs among SNR, artifact reduction, image acquisition speed, and spatial resolution (final image slice thickness) required by a specific application. Thus, a systematic investigation is necessary to further address these practical issues.

Although \(T_2^* \) contrast imaging is widely used, effective utilization of \(T_2^* \) contrast for scientific and clinical investigations has been limited by static magnetic field inhomogeneity artifacts. Magnetic field inhomogeneity can be produced by imperfect static field adjustments (shimming)
and unavoidable local field gradients near the air-filled structures inside the human head. For the later case, the regions influenced by the susceptibility artifacts are associated with many important brain functions with broad clinical implications. To remove field inhomogeneity in these brain regions with shimmering is difficult. Thus, SENSE-GESEPI addresses a critical issue for performing rapid imaging at high field strength. Furthermore, since the EPI k-space signal of SE is also modulated with T_2^* relaxation, the associated blurring artifact exists in SE echo planar images and becomes aggravated at higher field strengths. Therefore, the SENSE-GESEPI method may be used for reductions of artifacts in SE EPI at high field.

In conclusion, we have demonstrated the effectiveness of the SENSE-GESEPI method in reducing artifacts in EPI. This method addresses an important problem for T_2^* dynamic imaging at high field strengths, allowing for acquisition of reliable T_2^* contrast echo planar images with effective removal of all three types of field inhomogeneity artifacts. Thus, the SENSE-GESEPI method is a valuable tool for dynamic studies with EPI at high field strength.

ACKNOWLEDGMENTS

We thank Dr. Peter C. M. van Zijl for his insightful discussions and the assistance in conducting the experiments at the F. M. Kirby Research Center for Functional Brain Imaging of the Kennedy Krieger Institute.

REFERENCES