Complications of Chronic Kidney Disease in Children

Tamara Hill, RN, BSN, MSN, CPNP-AC
Division of Pediatric Nephrology
University of Maryland Medical Center

Disclosures

I do not have any conflicts of interest to disclose

Chronic Kidney Disease

Evidence of structural or functional kidney abnormalities (abnormal urinalysis, imaging studies, or histology) that persist for at least 3 months, with or without a decreased a glomerular filtration rate (GFR), as defined by a GFR defined of less than 60ml/min per 1.73m².

Guideline KDOQI 2002
Incidences in Kidney Disease in Children

- **US statistics**: NAPRTCS 5,561 patients aged 2–17

 - age 0–1yr = 19%
 - age 2–5yrs = 33%
 - age 6–12yrs = 17%
 - >12 yrs = 31%

- **International statistics**: 18.5–58.3 per million children

- Race, gender, age differences in incidences:
 - rate of progression equal in both sexes,
 - although obstructive uropathies are more common in males

 NAPRTCS 2002

Background

- By 2020, ~785K Americans will have ESRD

- **Cost**: $28 billion/year

- Due to importance of growth and neurocognitive development, children are more likely to be vulnerable to the effects of CKD than adults.

 CKID Study Protocol 2009

Risk Factors of CKD

- have diabetes
- have high blood pressure
- have a family history of chronic kidney disease
- are older
- belong to an ethnic group that has a high rate of diabetes or high blood pressure, such as African Americans, Hispanic Americans, Asian, Pacific Islanders and American Indians
Normal GFR In Children

- **Age** 2-8 days, Average 39 ml/min, 17-60 Range
- **Age** 4-28 days, Average 47 ml/min, 26-68 Range
- **Age** 30-90 days, Average 58 ml/min, 30-86 Range
- **Age** 1-6 months, Average 77 ml/min, 39-114 Range
- **Age** 6-12 months, Average 103 ml/min, 49-157 Range
- **Age** 12-19 months, Average 127 ml/min, 62-191 Range
- **Age** 2-12 years, Average 127 ml/min, 89-165 Range

Staging

- **Stage I** = normal GFR (>90) and persistent albuminemia
- **Stage II** = GFR 60-89 and persistent albuminemia
- **Stage III** = GFR 30-59
- **Stage IV** = GFR 15-29
- **Stage V** = GFR <15 or ESRD

Guideline: KDOQI 2008

Etiology of CKD

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>Incidences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obstructive Uropathy</td>
<td>22%</td>
</tr>
<tr>
<td>Renal Dysplasia</td>
<td>18%</td>
</tr>
<tr>
<td>Glomerulonephritis</td>
<td>~10%</td>
</tr>
<tr>
<td>Focal Segmental Glomerulosclerosis</td>
<td>~9%</td>
</tr>
<tr>
<td>Reflux Nephropathy</td>
<td>8%</td>
</tr>
</tbody>
</table>
Hypoplastic Kidney: Abnormal small kidney that contain a reduced number of normally developed filtering elements.

Renal Dysplasia: Hypoplastic

- Hypoplastic Kidney: Abnormal small kidney that contain a reduced number of normally developed filtering elements.

Dysplastic

- Dysplastic Kidney: Abnormal development of kidneys; may contain cysts.
Glomerulonephritis

- Glomerulonephritis describes the inflammation of the membrane tissue in the kidney that serves as a filter, separating wastes and extra fluid from the blood.
- aka: Nephritis, Nephrotic Syndrome
- Acute vs Chronic

FSGS – Focal Segmental Glomerulosclerosis

- Focal” means that only some of kidneys’ glomeruli have been damaged, while some are still normal
- Glomerulo-” refers to the clusters of tiny blood vessels in the kidneys that filter waste from the blood.
- “Sclerosis” refers to scarring.
Reflux Nephropathy

- aka: Vesicoureteral Reflux, Ureteral Reflux, Chronic Atrophic Pyelonephritis
- Urine backs up to the kidney; over time can cause scarring

Secondary Effects/ Complications

- Nutrition
- Growth
- Bones
- Cardiovascular Disease
- Anemia
- Neurodevelopment
- Psychosocial
- Pharmaceutical Agents

Nutrition

- Feeding Disorders: anorexia, N/V, abnormal taste (G-Tubes)
- Protein: need protein intake, but not in excess
- Vitamins: Vit D, folate, Nephro QT, Renavite
- Calories: weight gain for growth
- Specialized Formula: PM 60/40, Suplena – low in phosphorous and potassium
The cause of delayed growth in children with kidney disease has been attributed to protein-calorie malnutrition, kidney losses of essential salts, increased tissue breakdown, metabolic acidosis, anemia, kidney related bone disease, and disturbances in the growth hormone-insulin-like growth factor-1 (IGF-1) axis.

Adolescents (>13 years old) have less severe height deficits relative to infants (<24 months) and toddlers (2–5 years old). Infants are the worst off overall.

Standardized growth charts and head circumference for monitoring growth

Growth Hormone Injections

Children with STD score <-2.5 had two-fold higher risk of death compared to those initiating dialysis with STD score of >-2.5

Increased hospital days per month of dialysis

Less likely to attend school

Risk factor for increased morbidity and mortality in children with CKD

Furth 2002

Factors that Contribute to CKD-related Growth Retardation

Age of initiation of CKD
Type of primary renal disease
Concomitant acidosis
Malnutrition from calorie deprivation
Anemia
Secondary hyperparathyroidism (with or without renal osteodystrophy)
Renal Osteodystrophy: combines features of secondary hyperparathyroidism, rickets, osteomalacia, and osteoporosis

Secondary Hyperparathyroidism:
Range 11.8 – 94.8

Dietary: low phosphorus foods
Medication: Phosphorus Binders – Renvela, Renagel
Vitamin D: Calcitriol (PO/IV), Ergocalciferol
Surgery: Parathyroidectomy

Cardiovascular Disease
- Cardiovascular mortality rate reported in children and young adults is almost 1000 times higher than general population group
- 33% of all deaths in children with ESRD were related to cardiovascular causes
- ECHO: Left Ventricular Hypertrophy, increased left atrial size, functional changes in systole and diastole, vascular calcifications
Cardiovascular Disease: Hypertensive Target Organ Damage

- LVH and increased carotid artery stiffness
- Abnormalities in 24-hour BP profile
- Doppler Imaging of the ascending and abdominal aorta

Anemia

- Causes: insufficient production of erythropoietin, diseased kidneys or iron deficiency
- Recombinant Human Erythropoietin: Epogen, Procrit
- Transfusions
- Infusions: Venofir, Ferrlecit 1.5 mg/kg per dose of elemental iron
- Oral Iron Supplements

Neurodevelopment

Rotundo, et al and McGraw and Haka-Ikse, revealed findings of profound developmental delay in 60–85% of infants with severe renal insufficiency

Warady found that global developmental delay, delay in gross motor skills, overt hyponia, and impaired language development was reported in 20–65% of young infants and toddlers.

Hulstijn-Dirkmaat et al compared the development of 15 toddlers with CKD who were being conservatively managed with that of 16 children who were receiving dialysis therapy
Neurodevelopment

- Older children show deficits in:
 1. IQ
 2. Memory
 3. Visual spatial skills
 4. Attention
 5. Executive Cognitive functions

Factors that Influence Severity of Cognitive Deficits in CKD Kids

- Age of onset
- Duration of kidney failure
- Anemia
- Depression

Psychosocial

- Development of independence is impeded
- Body Composition and Image
- Complications / Frequent Hospitalizations
- Leads to adulthood: unemployment or lower quality employment
- Negative impact on siblings
- Multidisciplinary Approach
Research

- **CKID**: Chronic Kidney Disease in Children Prospective Cohort Study – started in October 2003
 - Study Aims:
 - To determine risk factors for progression of pediatric chronic kidney disease
 - To examine the impact of CKD on neurocognitive development
 - To examine the impact of CKD on risk factors for cardiovascular disease
 - To examine the impact of CKD on growth
 - 50 Pediatric Nephrology Sites in North America and largest study in North America funded by National Institutes of Health (NIH)

Research

The North American Pediatric Renal Trials and Collaborative Studies (NAPRTCS) is a research effort organized in 1987. At the outset of the study, the operational objective of this was to obtain the voluntary participation of all renal transplant centers in North America in which (>4) pediatric patients received renal allografts annually. Scientific objectives include capture of information about current practice and trends in immunosuppressive therapy with an ultimate goal of improving care of pediatric renal allograft recipients in North America.

- In 1992, the study was expanded to include pediatric patients who receive maintenance hemodialysis or peritoneal dialysis therapy. In 1994, data collection began on patients with chronic kidney disease (CKD).

Don’t VOID the Renal System

Thank you for your attention.
References

