Session Information
Session Title: Lumps, Tufts and Dimples
Session Number: F3056, F2130
Faculty Name: Mark S. Dias, MD, FAAP
Faculty Institution: Penn State Children’s Hospital, Penn State University, Hershey, PA
Faculty Disclosure Information
In the past 12 months, I have no relevant financial relationships with the manufacturer(s) of any commercial product(s) and/or provider(s) of commercial services discussed in this CME activity.
I do (or) do not intend to discuss an unapproved/investigative use of a commercial product/device in my presentation.

LUMPS, TUFTS AND DIMPLES
IT’S THE PITS!!
Mark S. Dias, MD, FAAP
Departments of Neurosurgery and Pediatrics
Penn State Children’s Hospital
Penn State University College of Medicine
Hershey, PA
Embryology of the Nervous System:
Gastrulation

- Primitive streak elongates from caudal to cranial end (POD 13-16)
- Prospective mesoderm ingresses through primitive groove
- Remaining epiblast cells spread out, replace ingressing mesoderm cells

- Hensen’s node at cranial end of the primitive streak
- Prospective notochordal cells ingress through node and become notochord
- Primitive streak caudally, becomes caudal cell mass
Embryology of the Nervous System: Primary Neurulation

- POD 17-27
- Neural groove forms as median hinge point
- Neural folds develop
- Neural folds fuse
- Separation of neuro- and cutaneous ectoderm (dysjunction)

Embryology of the Nervous System: Primary Neurulation

- Cranial neuropores last points to close
- Caudal neuropore at level of S2
- Cranial neuropore at lamina terminalis, just above optic chiasm
- Additional occipital neuropore
- Neuropores most common sites of dermal sinus tracts
Embryology of Nervous System: Secondary Neurulation

- Begins on POD 27
- Involves spinal cord caudal to S2 and filum terminale
- Formed from caudal cell mass
- Occurs in the presence of an intact cutaneous ectoderm
- Species specific

Embryology of the Nervous System: Ascent of Conus Medullaris

- POD 42-54: Retrogressive differentiation
- Caudal neural tube thinner
 - No mantle zone
 - Rudimentary marginal zone
 - Looks "less well developed"
- POD 54 and beyond: Differential growth of spinal cord and vertebral column

Embryology of the Nervous System: Ascent of Conus Medullaris

- Most ascent pre-natally
- Conus at or above L2-3 disc space at birth
- Conus at or above L1-2 disc space by 2 months post-natal
Level of Normal Conus Medullaris

- 100 children with brain tumors having screening whole spine imaging
- Level of conus medullaris measured
- Mode: L1-2 disc space
- Mean: Inferior third of L1
- Lower border (95% confidence limits): Middle third L2
- Below inferior third of L2 considered radiographically tethered

Kesler, Dias, Kalapos: Neurosurg Focus 2007

Innocent Coccygeal Dimples

- Coccygeal - within the gluteal cleft
- Tip of coccyx palpable within few millimeters
- Normal gluteal cleft
- Shallow, non-complex dimple
- No tufts of hair, hemangiomata, skin appendages or skin tags
- No neurological, urological, or orthopedic abnormalities
- Remnant of tail bud/Hensen’s node
Innocent Coccygeal Dimples

- Prevalence up to 4% of population
- Not related to pilonidal cysts in adults
- No convincing evidence for relationship with congenital spinal cord malformations
 - Only 7 cases with SC abnormalities in literature
 - 5/7 cases had other cutaneous markers
 - 2 not clear whether dimple was within gluteal cleft
 - Powell: 2000 cases, 1 with tract to outer dura
 - Herman – 0/53, Gibson – 0/75 had abnormalities
 - Weprin and Oakes: 1000 cases, no evidence of tethering or deterioration (imaging not done)
Spinal Dermal Sinus Tracts (DST)

- Incidence 1 in 2500 births
 - 1% cervical
 - 10% thoracic
 - 41% lumbar
 - 35% lumbosacral
- May be associated with other congenital spinal cord malformations
 - Split cord malformations, lipoma, thickened filum terminale, endodermal or dermoid cyst

Spinal Dermal Sinus Tracts (DST)

- Lumbosacral (above gluteal crease)
- Abnormal gluteal cleft
- Deep or complex
- Tufts of hair, hemangiomata, appendages or skin tags
- Neurological, urological, or orthopedic abnormalities
Embryology of DST

- Failure of neuroectoderm to separate from cutaneous ectoderm during dysjunction
 - Tongue of cutaneous ectoderm remains attached to neural tube
 - Persistence of tract variable
 - Some tracts involve subcutaneous tissues only, most remain attached to spinal cord
- Most common at posterior neuropore
 - Tract therefore ends along dorsum of spinal cord at level of S2, separate from filum terminale
Pathophysiology of Deterioration in Spinal DST

- Spinal cord tethering
- Bacterial meningitis (portal of entry)
- Aseptic meningitis (desquamation of epithelial debris within CSF)
- Mass effect from expanding dermoid inclusion cyst
Imaging of Spinal DST

- Spinal Ultrasound
 - Good screening tool, but not sensitive
 - Probably not worthwhile after 6 months of age
- Magnetic resonance Imaging
 - Definitive neuroimaging study
 - More sensitive than sonography
 - Missed 2/3 of tracts in one study
 - Conus may not be abnormally low
- Need for operation depends upon clinical appearance and location of dimple!!!!

Clinical Presentation of Spinal DST

- Focal neurological deficits in 2/3 at initial neurosurgical evaluation
 - Motor weakness 39%
 - Sensory changes 25%
 - Gait changes 18%
 - Sphincter disturbances 21%
 - Bowel and bladder changes 14%
- Age < 1 yr: 50% with neurological deficits
- Age > 1 yr: 92% with neurological deficits
- Infection in 3/28 (1 with meningitis)
Management of Spinal DST

- Linear vertical incision, ellipse around tract
- Follow tract to defect in lumbodorsal fascia
- Laminectomy adjacent to tract
- Identify penetration of dura
- Open dura cranial and caudal to track, ellips dural opening around tract
- Follow tract to conus medullaris
- Look for separate filum terminale
Meningocele Manque

- Likely related embryologically to DST
- Scarified, ‘cigarette paper’, ‘cigarette burn’ skin lesion
- May be tender to touch
- No CSF leakage
- Fibrous tract or atretic peripheral nerves, dorsal root ganglion cells
- 50% associated with split cord malformations
Cranial Dermal Sinus Tracts

- Less common than spinal DST
- Occipital, retro-auricular, nasofrontal location
- Modes of deterioration
 - Intracranial suppurative infection
 - Epidural abscess, subdural empyema, recurrent bouts of meningitis, brain abscess
 - Growing intracranial dermoid or epidermoid masses

Occipital DST

- Cutaneous pit or tract usually located near occipital external protuberance
- Skull X-rays and CT/or scans demonstrate bone defect at site of cutaneous lesion
- MRI better demonstrates soft tissue tract
- Invariable intracranial extension
- Associated hairy nevus (2/8 cases) or subcutaneous mass (4 of 8 cases)
Frontonasal DST

- Dimple or dermoid extending anywhere from nasal tip to glabella
- Innocuous looking
- Travel between nasal bone and nasal cartilage toward anterior skull base
- 90% end extra-cranially
- 10% extend through foramen cecum, anterior to crista galli, and end intracranially
 - Extradural, intra-falx, subarachnoid space, lamina terminalis
Embryology of Cranial DST

- Failure of dysjunction at cranial neuropores
 - Occipital midline: occipital lobes and/or cerebellum
 - Lamina terminalis

A. Dura
 Frontal Bone
 Fonticulus
 Nasofrontalis
 Nasal Bone
 Prenasal Space
 Nasal Cartilage

B. Foramen
 Cecum
 Dura
 in Contact
 with Skin
Surgical Management of Frontonasal DST

- If no intracranial extension on neuroimaging, excise superficial tract, follow toward skull base
- If tract ends extracranially, no need for further exploration
- If intracranial extension found, plan intracranial exposure at same or later operation
- If obvious intracranial extension, operation planned jointly with plastic and neurosurgery
Flammeus Nevus and Spinal Lipomas

- Flat, not raised, port wine in color
- Similar in appearance to ‘stork bite’
- Irregular outline, blanches with pressure
- May be associated with other cutaneous markers of spinal dysraphism
 - Dermal sinus tract, subcutaneous masses
 - Meningocele manque
 - Fawn's tail
 - Hairy nevus

Tubbs, JNS:Pediatrics, 2004

Management of Flammeus Nevus

- Incidence of underlying spinal cord malformations is unknown
 - 21 (17%) of 120 patients with occult spinal dysraphism in one series had isolated flammeus nevus as the only manifestation (N=21)
 - Lipoma 3
 - Fatty filum terminale 5
 - Dermal sinus tract with lipoma 2
 - Syringomyelia 8
 - Meningocele manque 1
 - Split cord malformation 2
 - No specific malformation associated with flammeus nevus

Tubbs, JNS:Pediatrics, 2004
Hypertrichosis (Fawn’s Tail)

- Most commonly associated with, and specific for, split cord malformations (SCM)
 - Diastematomyelia, diplomyelia
- Present in 11/14 (79%) of patients with SCM
- Associated with other cutaneous markers
 - Flammeus nevus in 3/14 (21%)
 - Dysplastic skin in 2/14 (14%)
 - Subcutaneous mass in 2 (14%)
Human Tails and Pseudotails

- **True tail**: contains both cutaneous and bony structures (stiff), remnant of human tail
- **Pseudotail**: lacks bony structures (soft)
- Differentiation arbitrary and confusing, not helpful since BOTH are associated with congenital dysraphic malformations
 - Congenital spinal anomalies in 50%
 - Spinal cord tethering in 25%
- MRI for further evaluation
- Surgical exploration, excision and spinal cord untethering

Lu, Pediatr Neurol 1998
Atretic Parietal Encephaloceles

- Small, usually elevated lesions with dysplastic skin over dome
- Whorling pattern of surrounding hair
- No CSF leakage
- Bisects sagittal sinus
- Underlying MRI abnormalities common, MRV demonstrates persistent embryonic prosencephalic vein
- Neurological/cognitive abnormalities in 40%
Cutis Aplasia Congenita

- Rare, most often involves midline scalp
- May involve scalp, scalp and bone or scalp, bone and dura
- Overlies superior sagittal sinus
 - Significant hemorrhage possible
- Sometimes associated with other malformations
 - Cerebral malformations, TEF, frontonasal dysplasia, congenital heart defects, facial palsy, mental retardation, cleft-lip/palate
 - Adams Oliver syndrome (CAC + limb defects)

Cutis Aplasia Congenita: Management

- Early identification of lesion
- Do NOT allow to dry out. Keep moist!!!!
 - Cover with wet gauze and plastic wrap
 - Wet to wet dressings
 - Cover with petroleum based antibiotic ointment
- Two surgical management strategies
 - Non-operative: wet to wet dressing changes
 - Operative: primary closure or scalp rotation flaps
Conclusions

• Innocent coccygeal dimples are located within the gluteal cleft
 • No associated cutaneous lesions
 • Depth of pit not important
 • No need for further workup, imaging, or surgery

• Pathological lumbosacral DST are *more cranially located*, outside of gluteal cleft
 • Imaging important for surgical planning but of no importance for determining need for surgery
 • Might as well go directly to MRI rather than US
 • Prophylactic surgical exploration necessary

Conclusions

• Cranial DST
 • Recognize importance of seemingly innocent midline dimple or bump anywhere on nose
 • Suspicion in cases of intracranial suppurative infections in expected locations, or recurrent bouts of unexplained meningitis
 • Neuroimaging may include both CT and MRI
 • Do not inject dye into any tract
 • Combined surgical approach with experienced pediatric neurosurgical and plastic/craniofacial surgical expertise

Conclusions

• Flammeus nevus is associated with various forms of spinal dysraphism (incidence unknown)
• Hypertrichosis (fawn’s tail) most often associated with, and specific for, SCM
• Human tails associated with spinal cord malformations in 50%, tethering in 25%
Conclusions

- Atretic encephaloceles look benign, associated with underlying brain malformations
 - Whorls of hair, skin covered
- Cutis aplasia congenita similar but without whorls of hair, not skin covered, sometimes has underlying skull and dural defect
 - Hemorrhage from SSS, keep it moist!
 - Surgical and non-surgical management proposed

Midline cutaneous anomalies other than coccygeal dimples should be considered to have associated underlying CNS malformations and should be referred to a specialist for evaluation and treatment